US009400693B2

a2 United States Patent

Niimura

US 9,400,693 B2
Jul. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54) CONTROLLING APPLICATION PROGRAMS
BASED ON MEMORY USAGE OF A PROCESS
AND RIGHT OF APPLICATION PROGRAMS
TO USE DISPLAY UNIT

(75) Inventor: Kenji Niimura, Kanagawa (JP)

(73) Assignee: Ricoh Company, Ltd., Tokyo (IP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 542 days.

(21) Appl. No.: 13/400,813

(22) TFiled: Feb. 21,2012

Prior Publication Data

US 2012/0233624 Al Sep. 13, 2012

(65)

(30) Foreign Application Priority Data

................................. 2011-048814

Mar. 7,2011 (JP)

(51) Int.CL
GOGF 9/46
GOGF 9/50
GOGF 9/48

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)

(52)
.............. GO6F 9/5022 (2013.01); GO6F 9/485
(2013.01); GOGF 2209/503 (2013.01); GO6F

2209/504 (2013.01); GO6F 2209/5022

(2013.01); Y02B 60/142 (2013.01)
Field of Classification Search
CPC . GOGF 9/485; GOGF 9/5022; GOGF 2009/503;
GOGF 2009/504; GOGF 2009/5021; GOG6F
2009/5022
USPC 718/102, 103, 104; 711/154, 171
See application file for complete search history.

1531 162
APPL I CAT|ON SDK
[MANAGEMENT UNIT APPLICATION

101 |
]j:\ READ APPLICATION INFORMATION FILES

(58)

APPLICATION INFORMATION

(56) References Cited
U.S. PATENT DOCUMENTS
7,028,298 B1* 4/2006 Footeccccovevvrennenn. 718/104
8,103,769 B1* 1/2012 Weiser etal. 709/225
8,321,558 B1* 11/2012 Sirotaetal. 709/224
8,327,371 B2* 12/2012 Horiietal. 718/104
8,635,405 B2* 1/2014 Nishihara et al. L TLH119
8,959,515 B2* 2/2015 Qincccccovevvennee ... 718/100
2005/0021917 Al* 12005 Mathuretal. 711/159
2007/0124510 Al 5/2007 Ando
2008/0189793 Al* 82008 Kirkupccccoveenee. GOGF 21/53
726/27
2009/0113444 Al* 4/2009 Hackborn GOGF 9/461
719/312
2009/0119553 Al* 5/2009 Matsushima 714/57
2009/0133029 Al* 5/2009 Varadarajan GOGF 9/485
718/104
2009/0248996 Al* 10/2009 Mandyam et al. 711/154
2010/0043004 Al* 2/2010 Tambietal. ... 718/103
2010/0122257 Al* 52010 Wada GOGF 9/485
718/102
2011/0296421 Al* 12/2011 Gschwind GOG6F 9/3851
718/102
2012/0054466 Al* 3/2012 Devendran GOG6F 12/10
711/207
FOREIGN PATENT DOCUMENTS
Jp 2003-015892 1/2003
Jp 2005-202652 7/2005
(Continued)
OTHER PUBLICATIONS

Japanese Office Action dated Novemeber 25, 2014—Machine Trans-
lation.*

Primary Examiner — Abu Ghaffari
(74) Attorney, Agent, or Firm — IPUSA, PLLC

(57) ABSTRACT

An apparatus includes a monitoring unit configured to moni-
tor memory usage of a process in which multiple application
programs are running, and a control unit configured to termi-
nate one or more of the application programs when the
memory usage of the process exceeds a first threshold.

12 Claims, 5 Drawing Sheets

156 155
CONTROL TARGET MONITORING
SELECTION UNIT UNIT

: ;

§102

REQUEST TO START OR
TERMINATE CONTROL TARGET

5103 !
READ CONTROL INFORMATION FILE
IDENTIFIERS OF MONITORING |

CONTROL CONDITIONS 15104
i

5105 |

REQUEST TO START
MONITORING

CONTROL
CONDITION SATISFIED _~S108

5107
SELECT CONTROL MODE
s108 AND CONTROL TARGET

START OR TERMINATE

CONTROL TARGET. L5109

US 9,400,693 B2

Page 2
(56) References Cited Jp 2007-058412 3/2007
Jp 2007-110689 4/2007

FOREIGN PATENT DOCUMENTS

Jp 2005-269439 9/2005 * cited by examiner

US 9,400,693 B2

Sheet 1 of 5

Jul. 26, 2016

U.S. Patent

advo

1078
advo as

0

JOV4d3LNI
HHOMLIN

91

W3IAOW YILNIEd YINNYOS
pL g1 2

aaH WOY VY
pLL 1 Al

NVHAN Ndo
—— YITIOHLNOD i

T
SEN
SNOILLYHIdO
ol o1
RIE

US 9,400,693 B2

Sheet 2 of 5

Jul. 26, 2016

U.S. Patent

’

~-d S83004d

651 ~ SO

8G1 ~ FOIAYIS TO¥LNOD

Vel WA | INOLLYO |[NOLLVO||NOILVO| [NOILYO |
| | -INddV || -T1ddV || -[ddV || -[ddV |}
" LINA WHO41V1d %as x “
| LINn NOI10373S LINT] | XVA || AdOO) INIEd) NVOS
| |ONIHOLINOW| | 1394Vl inaw3ovvi | (LIND ONTNOLSH 4 7y oo "ey) 7 21617 (g7 |
; T04.LNOO NOTLVD | Tddy| | NOTLVANOANI i i :
e 951 gs1~| Teal NOILYOITddY || | SNOLLVOINddV QuVANVLS |
| TN DNIY0IS zeaL e T
m NOILVWYOANT | rommmmmmmmmmmmm oo »
m /L7 TT0¥INDD : NOILVI11ddY | : _
w | Xas ¥
| 261~ 8

SNLvdVddy ONINHOd JOVINIL

01

¢ OlI4

US 9,400,693 B2

Sheet 3 of 5

Jul. 26, 2016

U.S. Patent

"l__

€OId ...

AI llllllll

.
|
|
|
|
[}

IIIIIIIIIIIIIIIIIII +
I
1

[

_ 13DHVL TOHINOD
i J1VNIANY3L 4O LdVLS

601S

JdOW TOHLNOO 1O313S

13DYV1 TOYLINOD ANV _W\m
L0l

»

901S/— Q3IIASILYS NOILIANOD

TOHLINOD

“c0l1S~ DNIJOLINOW

14v1S Ol 1S3IND3IH

DNIMOLINOW JO SHIHLLNIAI
I114 NOLLYWHOANI TOMLNOD avay w
€018 ﬁ

SNOLLIANOD TTOH1INOD
ANV S139dV.L

'___

—

801S~ L13DYVL TOHINOO JLYNINYIL

d0O 1dv1S Ol 1S3Nd3d

o r e —— e e —————

[}
1
1
1
1
1
)
)
1
i
]
[}
[}
1
[}
[}
[}
[}
[}
\
1
t
[}
1
1
[}
1
\I/

om0]

.
|
|
|
I
|
I
I
|
!

1INN
ONIHOLINOW

LINN NOI12373S
1394Vl TT04.LNOD

GGl

961~

2018~ NOILVNHOSNI NOLLYOI'lddVY

S3Td ZO:.<_>_W_OUH_ZH NOILVOI'lddY d

vay %
101LS

=L

NOILYOITddY LINN INIWIDVNVK
MAS NO| VD1 1ddY
51— 1eGL—

U.S. Patent Jul. 26, 2016 Sheet 4 of 5 US 9,400,693 B2

FIG.4

1 <{?xml version="1.0" encoding="UTF-8"?>
2 <I-- DALP File for Device~SDK Sample Application —>
3
4 <dalp dsdk="" version="0.10">
5
6 <information>
7 {product-id>321321</product—id>
8 <{title>demoxlet<{/title>
9 <vendor>ABC Company</vendor)>
10 </information>
11
12 <{resources>
13 <dsdk version ="1.07/>
14 {jar href="./demo jar base path="current” />
15 <{/resources>
16
17 <application—desc
18 main—class="DemoApplication”
19 priority="high”
20 auto—appli-manage="true”
21 min—-memory="0.3MB”
22 max—memory="15MB">
23 </application—desc>
24
25 </dalp>

FIG.5

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <appli-manager>

4 <algorithm

5 type="memory—priority”

6 lower—threshold—memory="20MB”

7 upper—threshold-memory="28MB”

8 </algorithm>

9 </appli-manager>

U.S. Patent

Jul. 26, 2016 Sheet S of 5

FIG.6

US 9,400,693 B2

1 <?xml version="1.0" encoding="UTF-8"7>
2

3 <appli-manager>

4 <algorithm

5 type="memory—panel-owner”

6 lower—threshold—memory="20MB”
7

8

9

upper—threshold-memory="28MB”
</algorithm>
{/appli-manager>

FIG.7

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <appli-manager>

4 <algorithm

5 type="memory—frequency

6 lower—threshold—memory="20MB”

7 upper—threshold-memory="28MB”

8 </algorithm>

9 </appli-manager>

US 9,400,693 B2

1
CONTROLLING APPLICATION PROGRAMS
BASED ON MEMORY USAGE OF A PROCESS
AND RIGHT OF APPLICATION PROGRAMS
TO USE DISPLAY UNIT

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is based upon and claims the ben-
efit of priority of Japanese Patent Application No. 2011-
048814, filed on Mar. 7, 2011, the entire contents of which are
incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

An aspect of this disclosure relates to an apparatus, a con-
trol method, and a storage medium.

2. Description of the Related Art

In a device such as a multifunction peripheral, multiple
application programs (hereafter simply referred to as “appli-
cations™) are executed using limited memory resources. In
such a device, generally, one application is executed as one
process, so that this mechanism is referred to as “one appli-
cation per process” herein. However, there is also a device
where multiple applications are executed as one process (or
on one process), and this mechanism is referred to as “mul-
tiple applications per process™ herein (see, for example, Japa-
nese Laid-Open Patent Publication No. 2005-269439).

When the “multiple applications per process” mechanism
is employed, a memory space is shared by multiple applica-
tions running in a process. In this case, if the memory usage of
an application increases more than expected and the process
runs out of memory, it affects not only that application but
also the other applications. As a result, for example, the other
applications may malfunction or may become inoperative.

SUMMARY OF THE INVENTION

In an aspect of this disclosure, there is provided an appa-
ratus that includes a monitoring unit configured to monitor
memory usage of a process in which multiple application
programs are running, and a control unit configured to termi-
nate one or more of the application programs when the
memory usage of the process exceeds a first threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an exemplary hard-
ware configuration of an image forming apparatus;

FIG. 2 is a drawing illustrating an exemplary software
configuration of an image forming apparatus;

FIG. 3is a sequence chart illustrating an exemplary process
of controlling SDK applications according to memory usage;

FIG. 4 is a drawing illustrating an exemplary application
information file;

FIG. 5 is a drawing illustrating a first example of a control
information file;

FIG. 6 is a drawing illustrating a second example of a
control information file; and

FIG. 7 is a drawing illustrating a third example of a control
information file.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Preferred embodiments of the present invention are
described below with reference to the accompanying draw-

10

15

20

25

30

35

40

45

50

55

60

65

2

ings. In the descriptions below, an image forming apparatus
10 is used as an example of an apparatus (or an information
processing apparatus) according to an aspect of this disclo-
sure. FIG. 1 is a block diagram illustrating an exemplary
hardware configuration of the image forming apparatus 10.
As illustrated in FIG. 1, the image forming apparatus 10 may
include, as hardware components, a controller 11, a scanner
12, a printer 13, a modem 14, an operations panel 15, a
network interface 16, and a secure digital (SD) card slot 17.

The controller 11 may include a central processing unit
(CPU) 111, a random access memory (RAM) 112, a read-
only memory (ROM) 113, a hard disk drive (HDD) 114, and
a non-volatile RAM (NVRAM) 115. The ROM 113 stores,
for example, programs and data used by the programs. The
RAM 112 is used, for example, as a storage area into which
programs are loaded and as a work area for the loaded pro-
grams. The CPU 111 executes the programs loaded into the
RAM 112 to implement various functions. The HDD 114
stores, for example, programs and data used by the programs.
The NVRAM 115 stores, for example, various settings.

The scanner 12 is a hardware component (image scanning
unit) for scanning a document to obtain image data. The
printer 13 is a hardware component (printing unit) for printing
print data on a recording medium such as paper. The modem
14 is a hardware component for connecting the image form-
ing apparatus 10 to a telephone line and is used to send and
receive image data for facsimile communications. The opera-
tions panel 15 is a hardware component including an input
unit such as buttons for receiving user inputs and a display
unit such as a liquid crystal display panel. The network inter-
face is a hardware component for connecting the image form-
ing apparatus 10 to a (wired or wireless) network such as a
local area network (LAN). The SD card slot 17 reads, for
example, programs stored in a secure digital (SD) card 80.
With the image forming apparatus 10 configured as described
above, in addition to the programs stored in the ROM 113 and
the HDD 114, programs stored in the SD card 80 can be
loaded into the RAM 112 and executed. Instead of the SD
card 80, any other storage medium (e.g., a CD-ROM or a
universal serial bus (USB) memory) may also be used for this
purpose. Thatis, a storage medium that can be mounted on the
image forming apparatus 10 is not limited to the SD card 80.
When a storage medium other than the SD card 80 is used, the
SD card slot 17 may be replaced with a hardware component
corresponding to the storage medium used.

FIG. 2 is a drawing illustrating an exemplary software
configuration of the image forming apparatus 10. As illus-
trated in FIG. 2, the image forming apparatus 10 may include
standard applications 151, SDK applications 152, an SDK
platform 153, a virtual machine (VM) 154, a monitoring unit
155, a control target selection unit 156, a control information
storing unit 157, a control service 158, and an operating
system (OS) 159.

The standard applications 151 are default applications
installed in the image forming apparatus 10 before the factory
shipment. In the example of FI1G. 2, the standard applications
151 include a scan application 1511, a print application 1512,
acopy application 1513, and a fax application 1514. The scan
application 1511 performs a scan job. The print application
1512 performs a print job. The copy application 1513 per-
forms a copy job. The fax application 1514 performs a fac-
simile transmission job and a facsimile reception job. Each of
the standard applications 151 is executed as one process.

The control service 158 is implemented by software mod-
ules that, for example, provide upper-layer applications with

US 9,400,693 B2

3

functions for controlling various hardware resources, and
perform fundamental functions of the image forming appa-
ratus 10.

The SDK applications 152 (may be referred to in their
singular form for descriptive purposes) are plug-in applica-
tions that are additionally installed to add functions to the
image forming apparatus 10 after its factory shipment. Appli-
cations implementing any appropriate functions may be pro-
vided as the SDK applications 152. The SDK applications
152 may be installed, for example, via the SD card 80 or a
network into the image forming apparatus 10.

The SDK platform 153 provides an execution environment
and common functions for the SDK applications 152. The
SDK applications 152 are developed using application pro-
gramming interfaces (API) provided by the SDK platform
153 (those APIs are hereafter referred to as SDKAPIs). For
example, the SDK platform 153 provides the SDK applica-
tions 152 with an SDKAPI for a scan function, an SDKAPI
for a print function, and an SDKAPI for a copy function.
When an SDKAPI is called, the SDK platform 153 inputs a
request corresponding to the called SDKAPI to the control
service 158, and thereby causes the image forming apparatus
10 to perform a process corresponding to the called SDKAPI.

SDKAPIs may be made public to allow a third party to
develop the SDK applications 152. Since the SDKAPIs are
machine-independent, it is generally not necessary to modify
the SDK applications 152 for different types (or models) of
image forming apparatuses. Here, the SDK platform 153
itself is also a type of an application program installed in the
image forming apparatus 10. The SDK platform 153 may be
installed, for example, via the SD card 80 or a network into the
image forming apparatus 10.

Programs that can be installed into the image forming
apparatus 10 are not limited to the SDK applications 152 and
the SDK platform 153 that are provided as examples in the
present embodiment. Any appropriate programs may be addi-
tionally installed into the image forming apparatus 10.

The SDK platform 153 includes an application manage-
ment unit 1531 and an application information storing unit
1532. The application management unit 1531 installs and
uninstalls the SDK applications 152, and also controls start
and termination ofthe SDK applications 152. The application
information storing unit 1532 stores a file (hereafter referred
to as an “application information file”) for each SDK appli-
cation 152 which includes attribute information of the SDK
application 152. Here, an installation package (e.g., an
archive file) of each SDK application 152 may include an
executable file and application information file of the SDK
application 152. When installing an SDK application 152, the
application management unit 1531 stores the application
information file included in the installation package of the
SDK application 152 in the application information storing
unit 1532. The application information storing unit 1532 may
be implemented, for example, by a storage area of the HDD
114 or the NVRAM 115.

The VM 154 is, for example, a Java (registered trademark)
virtual machine. In FIG. 2, the SDK applications 152, the
SDK platform 153, the monitoring unit 155, and the control
target selection unit 156 are programs that run on the VM 154.
Therefore, when the VM 154 is a Java virtual machine, the
SDK applications 152, the SDK platform 153, the monitoring
unit 155, and the control target selection unit 156 are imple-
mented as Java (registered trademark) programs.

The programs (surrounded by a dotted line P) on the VM
154 run in one process (or on one process). This process is
hereafter referred to as a “process P”. For example, the SDK
applications 152 are executed as threads in the process P.

20

25

40

45

50

55

4

Accordingly, the SDK applications 152 share memory
resources assigned to the process P by the OS 159. Thus, the
process P is an example of the “multiple applications per
process”.

The monitoring unit 155 continuously monitors memory
usage (or memory consumption) of the process P. The moni-
toring unit 155 compares the monitored memory usage of the
process P with a predetermined condition (or conditions) and
if the condition (or one of the conditions) is satisfied, reports
to the control target selection unit 156 that the condition is
satisfied.

When receiving the report from the monitoring unit 155,
the control target selection unit 156 selects, based on contents
(control information) in a control information file stored in
the control information storing unit 157, one or more of the
SDK applications 152 as targets (control targets) whose start
or termination is to be controlled. The control target selection
unit 156 requests the application management unit 1531 to
start or terminate the selected SDK application(s) 152. The
control target selection unit 156 or a combination of the
control target selection unit 156 and the application manage-
ment unit 1531 may be called a control unit.

The control information storing unit 157 stores a control
information file that includes conditions to be compared with
memory usage of the process P by the monitoring unit 155
and information indicating a criterion used by the control
target selection unit 156 to select one or more SDK applica-
tions 152 as control targets. The control information storing
unit 157 may be implemented, for example, by a storage area
of the HDD 114 or the NVRAM 115.

The OS 159 is an operating system.

An exemplary process performed by the image forming
apparatus 10 is described below.

FIG. 3 is a sequence chart illustrating an exemplary process
of controlling the SDK applications 152 according to
memory usage. The process of FIG. 3 is started, for example,
when the image forming apparatus 10 is started.

In step S101, the application management unit 1531 reads
the application information files of the SDK applications 152
installed in the image forming apparatus 10 from the appli-
cation information storing unit 1532, and loads information in
the read application information files to, for example, the
RAM 112.

FIG. 4 is a drawing illustrating an exemplary application
information file. In this example, information in the applica-
tion information file is written in eXtensible Markup Lan-
guage (XML). However, the application information file may
also be written in any other format. For example, the appli-
cation information file may be written in a comma separated
value (CSV) format. Line numbers in FIG. 4 are added for
descriptive purposes.

In FIG. 4, lines 6 through 10 represent information for
identifying an SDK application 152 for which the application
information file is provided (hereafter, the identified SDK
application 152 is referred to as a subject application). For
example, line indicates an identifier (product ID) of the sub-
ject application.

Lines 12 through 15 indicate a file implementing the sub-
ject application. In this example, the subject application (the
SDK application 152) is implemented by a file with a file
name “demo.jar”.

Lines 17 through 23 include information related to opera-
tional conditions of the subject application. For example, line
18 indicates a class name “DemoApplication” of the main
class of the subject application. The main class, here, indi-
cates a class to be operated by the application management
unit 1531. The main class of each SDK application 152

US 9,400,693 B2

5

includes an interface (e.g., a method) with the application
management unit 1531. The application management unit
1531 controls the SDK application 152 via the interface (or
the method).

Line 19 indicates a priority level of the subject application.
In the present embodiment, the priority level is indicated by
one of “high”, “middle”, and “low”. The priority level is used
when selecting an SDK application(s) 152 to be controlled.
Line 20 indicates whether the subject application is a candi-
date for a control target to be controlled according to the
memory usage of the process P (or whether the subject appli-
cation is a monitoring target to be monitored). When auto-
appli-manage="true”, the subject application is a candidate
for a control target. Meanwhile, when auto-appli-
manage="false”, the subject application is not a candidate for
a control target. Being a candidate for a control target indi-
cates that the subject application may be forcibly or automati-
cally terminated or started according to the memory usage of
the process P.

Line 21 indicates the minimum amount of memory
required by the subject application (minimum memory
usage). Line 22 indicates the maximum amount of memory
required by the subject application (maximum memory
usage). In the example of FIG. 4, the amount of memory
required by the subject application is greater than or equal to
0.3 MB and less than or equal to 1.5 MB.

Next, the application management unit 1531 sends the
information (hereafter called “application information”) in
the read application information files to the control target
selection unit 156 (S102). Instead of sending the application
information itself, the application management unit 1531
may be configured to send an address (or pointer) indicating
the location of a storage area into which the application infor-
mation is loaded. Then, the control target selection unit 156
reads the control information file from the control informa-
tion storing unit 157 (S103).

FIG. 51s adrawing illustrating a first example of the control
information file. In this example, the control information file
is written in XML. However, the control information file may
also be written in any other format. For example, the control
information file may be written in a comma separated value
(CSV) format. Line numbers in FIG. 5 are added for descrip-
tive purposes.

In FIG. 5, line 5 represents a selection criterion for select-
ing a control target. In this example, “memory-priority” in
line 5 indicates that a control target(s) (i.e., an SDK applica-
tion(s) 152 to be controlled) is selected based on the priority
level. In other words, “memory-priority” indicates that SDK
applications 152 with higher priority levels are preferentially
kept running (or active). Lines 6 and 7 represent control
conditions (or timing) for starting or terminating the selected
control target. More specifically, line 7 indicates that an SDK
application 152 selected according to the selection criterion
of line is forcibly terminated when the memory usage of the
process P exceeds an upper threshold of 28 MB. Meanwhile,
line 6 indicates that an inactive SDK application 152 is started
to run in the process P when the memory usage of the process
P falls below a lower threshold of 20 MB.

Accordingly, with the control information file of FIG. 5,
events where the memory usage of the process P exceeds 28
MB and falls below 20 MB are defined as control conditions.
The upper and lower thresholds are preferably determined
such that a safety margin is provided on each end of the
allowable range of the memory usage of the process P. For
example, the upper threshold may be determined by subtract-
ing a predetermined value from the upper limit of the allow-
able range of the memory usage of the process P, and the

20

25

30

35

40

45

6

lower threshold may be determined by adding a predeter-
mined value to the lower limit of the allowable range of the
memory usage of the process P.

The information at line 5 is used by the control target
selection unit 156 and the information at lines 6 and 7 is used
by the monitoring unit 155.

Referring back to FIG. 3, the control target selection unit
156 sends, to the monitoring unit 155, identifiers of SDK
applications 152 (monitoring targets) to be monitored and the
control conditions obtained from the control information
(FIG. 5) in the read control information file (S104). SDK
applications 152 corresponding to the application informa-
tion files where “auto-appli-manage” is “true” (line 20 in FI1G.
4) are selected as monitoring targets. The identifiers of the
SDK applications 152 are obtained from line 7 of the respec-
tive application information files.

Next, the control target selection unit 156 requests the
monitoring unit 155 to start monitoring the memory usage of
the process P (S105). In response to the request, the monitor-
ing unit 155 starts monitoring the process P. When the moni-
toring unit 155 runs as a part of the process P as in the present
embodiment, the monitoring unit 155 can easily identify the
process P to be monitored. Even when the monitoring unit
155 is not a part of the process P, the monitoring unit 155 can
identify the process P based on identification information of
the process P. Instead of monitoring the memory usage of the
process P, the memory usage of the respective SDK applica-
tions 152 selected as monitoring targets may be monitored,
and the total memory usage of the monitoring targets may be
compared with the control conditions. When the SDK appli-
cations 152 are Java (registered trademark) programs, the
memory usage of the SDK applications 152 may be moni-
tored using known technologies such as Java Management
Extensions (JMX) and Java Virtual Machine Tool Interface
IVMTD.

When monitored memory usage satisfies one of the control
conditions, the monitoring unit 155 reports the satisfied con-
trol condition to the control target selection unit 156 (S106).
Assuming that the control information file of FIG. 5 is used,
information indicating that the memory usage of the process
P has exceeded the upper threshold or fallen below the lower
threshold is reported to the control target selection unit 156.

Next, the control target selection unit 156 selects (or deter-
mines) a control mode (start or termination) and an SDK
application 152 to be controlled, based on the application
information (FIG. 4) of the respective SDK applications 152,
the control information (FIG. 5), and the reported (or satis-
fied) control condition (S107).

For example, when it is reported that the memory usage of
the process P has exceeded the upper threshold, the control
target selection unit 156 determines to terminate one (or
more) of the active (i.e., running) SDK applications 152.
More specifically, according to the selection criterion in the
control information, the control target selection unit 156
selects, from the active SDK applications 152 identified as
monitoring targets, an SDK application(s) 152 with a lower
(or lowest) priority level as a control target to be terminated.
The priority levels of the SDK applications 152 may be deter-
mined based on their application information. The control
target selection unit 156 can determine whether the SDK
applications 152 are active (running) or inactive (terminated)
by querying the application management unit 1531. The
application management unit 1531 maintains information
indicating whether the SDK applications 152 are active or
inactive to control start and termination of the SDK applica-
tions 152. When multiple SDK applications 152 are selected
based on the priority levels, an SDK application(s) 152 whose

US 9,400,693 B2

7

maximum memory usage or minimum memory usage is the
highest among the selected SDK applications 152 may be
selected as the control target to be terminated. This makes it
possible to effectively reduce the memory usage of the pro-
cess P while reducing the number of SDK applications 152 to
be terminated. Still, however, all the SDK applications 152
selected based on the priority levels may be terminated.

Meanwhile, when it is reported that the memory usage of
the process P has fallen below the lower threshold, the control
target selection unit 156 determines to start one (or more) of
the inactive SDK applications 152. More specifically, the
control target selection unit 156 selects an SDK applica-
tion(s) 152 with a higher (or highest) priority level as a control
target to be started, from the inactive SDK applications 152
identified as monitoring targets and having minimum
memory usage that is less than or equal to the difference
between the upper threshold and the current memory usage of
the process P (so that the memory usage of the process P does
not exceed the upper threshold even when the minimum
memory usage of the control target is added). When multiple
SDK applications 152 are selected based on the priority lev-
els, an SDK application 152 whose maximum memory usage
or minimum memory usage is the lowest among the selected
SDK applications 152 may be selected as the control target to
be started. This makes it possible to reduce the risk of causing
the memory usage of the process P to exceed the upper thresh-
old.

Then, the control target selection unit 156 sends the
selected control mode (start or termination) and the identifi-
er(s) of the selected SDK application(s) 152 to request the
application management unit 1531 to start or terminate the
selected SDK application(s) 152 (S108). Based on the control
mode and the identifier, the application management unit
1531 starts or terminates the selected SDK application 152
(S109). When the selected SDK application 152 is termi-
nated, the memory area being occupied by the selected SDK
application 152 is released. As a result, the memory usage of
the process P is reduced. Meanwhile, when the selected SDK
application 152 is started, the number of active SDK appli-
cations 152 increases.

According to the above embodiment, when the memory
usage of the process P exceeds the upper threshold, one or
more of the SDK applications 152 running in the process P are
terminated. This method or configuration makes it possible to
properly control the memory usage of the process P (i.e., the
memory usage of the SDK applications 152 running in the
process P).

Also according to the above embodiment, when the
memory usage of the process P falls below the lower thresh-
old, one or more inactive SDK applications 152 are started.
This method or configuration makes it possible to increase the
number of active SDK applications 152, thereby making it
possible to increase the number of services available for the
user.

In the above embodiment, a control target is selected based
on the priority level. However, any other criterion may be
used to select a control target.

FIG. 6 is a drawing illustrating a second example of the
control information file. In the control information file of
FIG. 6, “memory-panel-owner” is specified at line 5 as the
selection criterion for selecting a control target. In this
example, “memory-panel-owner” indicates that SDK appli-
cations 152 having an owner right of the operations panel 15
(or aright to use a display unit) are preferentially kept running
(or active). The owner right of the operations panel 152
enables the SDK applications 152 to provide a user interface
via the operations panel 152. In other words, SDK applica-

40

45

8

tions 152 with the owner right can receive user inputs or
provide information to the user via the operations panel 15.
Meanwhile, SDK applications 152 without the owner right
for the operations panel 15 are, for example, server applica-
tions that receive requests via a network and send processing
results corresponding to the requests via the network.

When the control information file of FIG. 6 is used, the
control target selection unit 156, in step S107 of FIG. 3,
preferentially selects an SDK application 152 without the
owner right of the operations panel 15 as a control target to be
terminated, or selects an SDK application 152 with the owner
right of the operations panel 15 as a control target to be
started.

This method of preferentially keeping SDK applications
152 with the owner right of the operations panel 15 running
makes it possible to improve the availability of the SDK
applications 152 to be operated via the operations panel 15. In
other words, this method makes it possible to reduce the need
for the user to manually start the SDK applications 152 with
the owner right via a control screen displayed on the opera-
tions panel 15 by the application management unit 1531.

Information indicating whether the SDK application 152
has the owner right of the operations panel 15 may be
included, for example, in the application information file.

FIG. 7 is a drawing illustrating a third example of the
control information file. In the control information file of
FIG. 7, “memory-frequency” is specified at line 5 as the
selection criterion for selecting a control target. In this
example, “memory-frequency” indicates that frequently-
used SDK applications 152 are preferentially kept running (or
active).

When the control information file of FIG. 7 is used, the
control target selection unit 156, in step 5107 of FIG. 3,
preferentially selects a less (or least) frequently used SDK
application 152 as a control target to be terminated, or selects
a more (or most) frequently used SDK application 152 as a
control target to be started.

This method of preferentially keeping frequently-used
SDK applications 152 running makes it possible to reduce the
need for the user to manually start the SDK applications 152
via a control screen displayed on the operations panel 15 by
the application management unit 1531.

The usage frequency of the SDK application 152 (or the
number of times the SDK application 152 is used or selected)
may be recorded, for example, in the HDD 114 or the
NVRAM 115 by the application management unit 1531.

A control target may also be selected based on a combina-
tion of two or more of the priority level, the owner right of the
operations panel 15, and the usage frequency.

In the above embodiments, the SDK applications 152 are
controlled (started or terminated) based on the memory
usage. Alternatively, the SDK applications 152 may be con-
trolled based on the usage of other hardware resources such as
a CPU.

An aspect of this disclosure provides an apparatus, a con-
trol method, and a non-transitory computer-readable storage
medium storing program code that make it possible to prop-
erly control the memory usage of application programs run-
ning in the same process.

The present invention is not limited to the specifically
disclosed embodiments, and variations and modifications
may be made without departing from the scope of the present
invention.

US 9,400,693 B2

9

What is claimed is:
1. An apparatus, comprising:
a display unit;
a memory that stores a program; and
a processor that executes the program to implement
a monitoring unit configured to monitor memory usage
of a process in which multiple application programs
are running, the application programs running on the
same apparatus and sharing a memory resource of the
apparatus assigned to the process, and
a control unit configured to terminate one or more of the
application programs when the memory usage of the
process exceeds a first threshold; and
a storage unit that stores right information indicating
whether the respective application programs have a
right to use the display unit,
wherein the control unit is configured to
terminate, one or more of the application programs that
do not have the right to use the display unit based on
the right information when the memory usage of the
process exceeds the first threshold, and
start one or more of the terminated application programs
to run in the process when the memory usage of the
process fails below a second threshold that is different
from the first threshold.
2. The apparatus as claimed in claim 1, wherein
the storage unit also stores priority information indicating
priority levels of the application programs; and
the control unit is configured to also preferentially termi-
nate one or more of the application programs with lower
priority levels based on the priority information when
the memory usage of the process exceeds the first thresh-
old.
3. The apparatus as claimed in claim 1, wherein
the storage unit also stores frequency information indicat-
ing a number of times each of the application programs
is used; and
the control unit is configured to also preferentially termi-
nate one or more of the application programs that are less
frequently used based on the frequency information
when the memory usage of the process exceeds the first
threshold.
4. The apparatus as claimed in claim 1, wherein
the storage unit also stores control target indicators indi-
cating whether the respective application programs are
control targets; and
when the memory usage of the process exceeds the first
threshold, the control unit is configured to terminate one
or more of the application programs that are determined
as the control targets based on the control target indica-
tors.
5. A method performed by an apparatus, the method com-
prising:
monitoring memory usage of a process in which multiple
application programs are running, the application pro-
grams running on the same apparatus and sharing a
memory resource of the apparatus assigned to the pro-
cess;
when the memory usage of the process exceeds a first
threshold, terminating one or more of the application
programs; and
when the memory usage of the process falls below asecond
threshold that is different from the first threshold, start-
ing one or more of the terminated application programs
to run in the process, wherein
the terminating includes referring to a storage unit of the
apparatus that stores right information indicating
whether the respective application programs have a right
to use a display unit of the apparatus, and

10

15

20

30

35

40

45

50

55

60

10

in the terminating, one or more of the application programs
that do not have the right to use the display unit are
terminated based on the right information.

6. The method as claimed in claim 5, wherein

the storage unit also stores priority information indicating

priority levels of the application programs; and

in the terminating, one or more of the application programs

with lower priority levels are also preferentially termi-
nated based on the priority information.

7. The method as claimed in claim 5, wherein

the storage unit also stores frequency information indicat-

ing a number of times each of the application programs
is used; and

in the terminating, one or more of the application programs

that are less frequently used are also preferentially ter-
minated based on the frequency information.

8. The method as claimed in claim 5, wherein

the storage unit also stores control target indicators indi-

cating whether the respective application programs are
control targets; and

in the terminating, when the memory usage of the process

exceeds the first threshold, one or more of the applica-
tion programs determined as the control targets based on
the control target indicators are terminated.

9. A non-transitory computer-readable storage medium
storing program code for causing, an apparatus to perform a
method, the method comprising:

monitoring memory usage of a process in which multiple

application programs are running, the application pro-
grams running on the same apparatus and sharing a
memory resource of the apparatus assigned to the pro-
cess;

when the memory usage of the process exceeds a first

threshold, terminating one or more of the application
programs; and

when the memory usage of the process falls below a second

threshold that is different from the first threshold, start-
ing one or more of the terminated application programs
to run in the process, wherein

the terminating includes referring to a storage unit of the

apparatus that stores right information indicating
whether the respective application programs have a right
to use a display unit of the apparatus, and

in the terminating, one or more of the application. pro-

grams that do not have the right to use the display unit are
terminated based on the right information.

10. The storage medium as claimed in claim 9, wherein

the storage unit also stores priority information indicating

priority levels of the application programs; and

in the terminating, one or more of the application programs

with lower priority levels are also preferentially termi-
nated based on the priority information.

11. The storage medium as claimed in claim 9, wherein

the storage unit also stores frequency information indicat-

ing a number of times each of the application programs
is used; and

in the terminating, one or more of the application programs

that are less frequently used are also preferentially ter-
minated based on the frequency information.

12. The storage medium as claimed in claim 9, wherein

the storage unit also stores control target indicators indi-

cating whether the respective application programs are
control targets; and

in the terminating, when the memory usage of the process

exceeds the first threshold, one or more of the applica-
tion programs determined as the control targets based on
the control target indicators are terminated.

#* #* #* #* #*

